Differential regulation of MAP kinase, p70S6K, and Akt by contraction and insulin in rat skeletal muscle.
نویسندگان
چکیده
To study the effects of contractile activity on mitogen-activated protein kinase (MAP kinase), p70 S6 kinase (p70S6K), and Akt kinase signaling in rat skeletal muscle, hindlimb muscles were contracted by electrical stimulation of the sciatic nerve for periods of 15 s to 60 min. Contraction resulted in a rapid and transient activation of Raf-1 and MAP kinase kinase 1, a rapid and more sustained activation of MAP kinase and the 90-kDa ribosomal S6 kinase 2, and a dramatic increase in c- fos mRNA expression. Contraction also resulted in an apparent increase in the association of Raf-1 with p21Ras, although stimulation of MAP kinase signaling occurred independent of Shc, IRS1, and IRS2 tyrosine phosphorylation or the formation of Shc/Grb2 or IRS1/Grb2 complexes. Insulin was considerably less effective than contraction in stimulating the MAP kinase pathway. However, insulin, but not contraction, increased p70S6K and Akt activities in the muscle. These results demonstrate that contraction-induced activation of the MAP kinase pathway is independent of proximal steps in insulin and/or growth factor-mediated signaling, and that contraction and insulin have discordant effects with respect to the activation of the MAP kinase pathway vs. p70S6K and Akt. Of the numerous stimulators of MAP kinase in skeletal muscle, contractile activity emerges as a potent and physiologically relevant activator of MAP kinase signaling, and thus activation of this pathway is likely to be an important molecular mechanism by which skeletal muscle cells transduce mechanical and/or biochemical signals into downstream biological responses.
منابع مشابه
Altered Regulation of Contraction-Induced Akt/mTOR/p70S6k Pathway Signaling in Skeletal Muscle of the Obese Zucker Rat
Increased muscle loading results in the phosphorylation of the 70 kDa ribosomal S6 kinase (p70S6k), and this event is strongly correlated with the degree of muscle adaptation following resistance exercise. Whether insulin resistance or the comorbidities associated with this disorder may affect the ability of skeletal muscle to activate p70S6k signaling following an exercise stimulus remains unc...
متن کاملLean and obese Zucker rats exhibit different patterns of p70s6 kinase regulation in the tibialis anterior muscle in response to high-force muscle contraction.
Increased phosphorylation of the 70-kDa ribosomal S6 kinase (p70S6k) signaling is strongly correlated with the degree of muscle adaptation following exercise. Herein we compare the phosphorylation of p70S6k, Akt, and mammalian target of rapamycin (mTOR) in the tibialis anterior (TA) muscles of lean and obese Zucker rats following a bout of eccentric exercise. Exercise increased p70S6k (Thr389) ...
متن کاملLeucine modulates contraction- and insulin-stimulated glucose transport and upstream signaling events in rat skeletal muscle.
Leucine has profound effects on glucose metabolism in muscle; however, the effects of leucine on glucose transport in muscle have not been well documented. We investigated the effects of leucine on contraction- and insulin-stimulated glucose transport in isolated rat epitrochlearis muscle in vitro. In the absence of insulin, tetanic contraction increased 3-O-methyl-D-glucose (3-MG) transport an...
متن کاملDifferential regulation of MAP kinase by contraction and insulin in skeletal muscle: metabolic implications.
We have investigated the activation of the extracellular signal-regulated kinases (ERK1 and ERK2) by muscle contraction and insulin in perfused rat skeletal muscle. Both stimuli activated ERK1 and ERK2 by an upstream kinase MAP/ERK kinase (MEK)-dependent mechanism, as the MEK inhibitor PD-98059 inhibited ERK phosphorylation. The presence of the phosphatidylinositol (PI) 3-kinase inhibitors LY-2...
متن کاملAENDO October 40/4
Wojtaszewski, Jørgen F. P., Jan Lynge,Allan B. Jakobsen, Laurie J. Goodyear, and Erik A. Richter. Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: metabolic implications. Am. J. Physiol. 277 (Endocrinol. Metab. 40): E724–E732, 1999.—We have investigated the activation of the extracellular signal-regulated kinases (ERK1 and ERK2) by muscle contraction and insu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 276 5 شماره
صفحات -
تاریخ انتشار 1999